HEADING
Be it New Product Development, Planning, or Promotions, implementing collaborative Demand Forecasting provides you with statistical / ML / AI data to support the course of action in the medium term.
OVERVIEW
Demand Planning comprises key step of arriving at a baseline number. This is done by using Statistical and ML/AI methods. The Module applies various methods of forecasting on the historical Sales data to arrive at the forecast in the coming months. The forecasting can be done at various levels such as SKU-Depot / Brand-Region / SKU Region
HEADING 1 COLUMN
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
HEADING 2 COLUMN
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
HEADING 3 COLUMN
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
HEADING 4 COLUMN
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
4 boxes
2 colomn with tick mark
ML / AI Methods
Selection of different AI / ML Methods for cases where ML can be implemented
Choice of Error Methods
Selection of Techniques based on different Error Measures with ability to add custom Statistical Techniques
Some Customer Cases
On the quantitative side, we have integrated the powerful Statistical and Graphical Modelling libraries of Python. We have also connected to ML / AI libraries of WML / Google / AWS to enables the application of a variety of statistical and ML/AI techniques for different situations
Consumer Electrical Company
Enhanced visibility and transparency via S&OP suite for a consumer electrical manufacturer
Speciality Tyre Company
Implemented Demand Forecasting and Demand Aggregation for the smooth function for the manufacturing unit