SUPPLY CHAIN ALLOCATION PLANNING

SOLUTIONS DESIGNED TO DETERMINE CONSTRAINED SUPPLY PLAN

Get realistic estimate of the extent to which consensus demand can be serviced considering production, material and logistics constraints with prioritisation given to different orders / customers and different objective functions

Description

SCAP uses Mixed Integer Linear Programming (MILP) technique to decide the optimal allocation of demand / inventory to the various sources and distribution point. The tool can be configured for cost minimization or contribution maximization or mixed objective functions.

SCAP considers parameters such as logistic cost, production costs, handling costs, taxation, market price etc. in the MILP model run different scenarios of Cost Minimization / Contribution Maximization or any other Mixed Objectives. The MILP is run with the constraints such as Supply Constraints, Mode Capacity Constraints, Demand Constraints, Norms Constraints. Allocation Planning can be used in various situations of Distribution Allocation. Production Allocation, Inventory Allocation, Product / Customer Mix depending on the industry and the specific Use Case

Features

Multi-Echelon Configuration

Incorporates multiple plants, warehouses, hubs, and depots across various locations to optimize supply chain efficiency and responsiveness.

Diverse Product and Mode Handling

Manages multiple products and transportation modes, enabling flexibility and adaptability to different market demands and transportation requirements.

Cost Minimization and Contribution Maximization

Implements constraints such as service levels, mode availability, and capacity utilization to minimize costs while maximizing overall contribution to profitability.

Capacity Optimization Across Multiple Dimensions

Considers product-wise, line-wise, and aggregate capacity constraints to ensure optimal resource allocation and utilization throughout the supply chain network.

Multi-Market Adaptability

Tailors supply chain operations to accommodate diverse market demands and geographical variations, ensuring efficient distribution and customer satisfaction across various regions.

Seasonality Analysis and Forecasting

Incorporates build-ahead strategies for seasonality analysis, enabling anticipation and management of variance or deviation in demand across multiple time periods, thus enhancing responsiveness and efficiency

Some Customer Cases

On the quantitative side, we have integrated the powerful Statistical and Graphical Modelling libraries of Python. We have also connected to ML / AI libraries of WML / Google / AWS to enables the application of a variety of statistical and ML/AI techniques for different situations

Consumer Electrical Company

Enhanced visibility and transparency via S&OP suite for a consumer electrical manufacturer

sales and operations planning
Speciality Tyre Company

Implemented Demand Forecasting and Demand Aggregation for the smooth function for the manufacturing unit

Other solutions that might interest you.

Sense - S Suite
Field force managment
Acquire - A Suite
Demand Aggregation Portal
Visualise - V Suite
BI, Dashboards and Analytics
Interpret - I Suite
Dispatch and Replenishment Planning

get in touch with us